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ABSTRACT

Liver fibrosis is a potentially reversible response to hepatic insults, triggered 
by different chronic diseases most importantly viral hepatitis, alcoholic, and non-
alcoholic fatty liver disease. In the course of the chronic liver disease, hepatic fibro-
genesis may develop, which is attributed to various types of cells, molecules, and 
pathways. Activated hepatic stellate cell (HSC), the primary source of extracellular 
matrix (ECM), is fundamental in pathophysiology of fibrogenesis, and thus is the 
most attractable target for reversing liver fibrosis. Although, liver biopsy has long 
been considered as the gold standard for diagnosis and staging of hepatic fibrosis, 
assessing progression and regression by biopsy is hampered by its limitations. We 
provide recent views on noninvasive approaches including serum biomarkers and 
radiologic techniques.
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INTRoDUCTIoN

Liver fibrosis is in fact a healing response to liver injury and is char-
acterized by excessive deposition of extracellular matrix (ECM) proteins 
as a result of different chronic liver diseases including viral hepatitis, 
alcoholic or non-alcoholic steatohepatitis.1-3 Liver fibrosis is beneficial at 
first because it can encapsulate the injury, and is considered a reversible 
process at this stage 4-8, but ultimately progresses to advanced fibrosis or 
cirrhosis, that might be irreversible and causes impaired liver function 
and subsequent morbidity and mortality.9

Cirrhosis may cause serious complications such as hepatocellular 
carcinoma or bleeding from esophageal varices and invariably leads to 
death.10 In the United States alone, cirrhosis is one of the leading causes 
of death and results in a significant burden as high as $2 billion.11,12 Ac-
cording to global burden of disease (GBD) study in 2013, cirrhosis is 
among the 10 most common causes of death in different world areas and 
the 6th cause of death in developed countries.13 The burden is expected 
to rise in the forthcoming years due to increasing prevalence of cirrhotic 
cases related to non-alcoholic steatohepatitis (NASH) and hepatitis C 
virus (HCV) infection.14,15 Thus, cirrhosis and liver transplantation is ex-
pected to be among important challenges in the 21st century.10 

Major advances have occurred in the field of liver fibrosis in recent 
years. Development of non-invasive strategies to detect liver fibrosis has 
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enabled clinicians to diagnose at-risk patients rapidly 
and readily.16

The aim of this paper is to review recent achieve-
ments in pathogenesis and diagnostic evaluation of 
liver fibrosis.

Pathogenesis
Liver fibrogenesis is a dynamic interaction be-

tween cellular and molecular processes. Although 
different diseases might result in liver fibrosis, there 
are common features.17 Defining mechanisms that 
contribute to liver fibrosis in each will direct future 
research toward discovery of therapeutic targets.18 

Hepatic fibrosis can be regarded as the result of 
an imbalance between ECM synthesis and degener-
ation. The balance between matrix metalloprotein-
ases (MMPs) and tissue inhibitors of metallopro-
teinase (TIMPs) is crucial for ECM homeostasis. 

Cell types 
Different populations of cells play roles in fi-

brogenesis, but activation of hepatic stellate cells 
(HSCs) is an essential factor in fibrogenesis.19,20

Liver myofibroblasts (MF) include a heteroge-
neous population of highly proliferative cells that 
accumulate at injury sites and promote ECM ac-
cumulation.21 Myofibroblast pool originates main-
ly from liver mesenchymal cells, namely HSCs.22 
Although HSCs are the primary source of MFs in 
liver fibrosis, extrahepatic precursors such as bone 
marrow derived mesenchymal cells and portal fi-
broblasts contribute in ECM synthesis.23-26 other 
minor sources of MFs are cells that undergo epi-
thelial-mesenchymal transition (EMT).27 However, 
some recent findings raise doubt about potential 
epithelial origin of ECM-producing cells.28-30

Hepatic stellate cells (HSC)
Hepatic stellate cells (HSCs) are one of the non-

parenchymal cells of the liver, residing adjacent to 
sinusoids, in the space of Disse. In liver tissues, 
HSCs store retinoids such as vitamin A and pro-
duce glial fibrillary acidic protein (GFAP), reason-
ing their former names fat-storing cells or vitamin 
A-rich cells.31-35 Since trans-differentiations are 
seen among HSCs in some pathologic conditions, it 

has been speculated that HSCs may originate from 
mesoderm-derived multipotent mesenchymal pro-
genitor cells (MMPCs). These progenitor cells gen-
erate several neural cell lineages as well as other 
mesenchymal cells.36-38

Autocrine and paracrine secretion of fibrogenic 
cytokines as a result of pathologic insults to liver 
cells, promote HSCs to trans-differentiate, chang-
ing from a quiescent phenotypes to an activated 
myofibroblastic state. These fibrogenic cytokines 
include tumor necrosis factor α (TNF-α), trans-
forming growth factor β (TGF-β), interleukin 1 (IL-
1), and platelet-derived growth factor (PDGF).39-43 
Activated HSCs express fibrogenic proteins and 
α-smooth muscle actin (α-SMA) and lose their lipid 
and retinoid storages, transitioning from an adipo-
genic state to a fibrogenic, chemotactic, and mito-
genic one.44,45

Hepatocytes
Hepatocytes, the parenchymal component of 

liver, are the main target of hepatitis viruses, alco-
hol toxicity, steatosis and other hepatotoxic agents. 
Chronic liver injury promotes hepatocyte apoptosis 
through TNF-α related apoptosis inducing ligand 
(TRAIL) and Fas.46,47 Some reports have shown that 
hepatocyte-derived apoptotic bodies stimulate se-
cretion of fibrogenic cytokines from macrophages 
and also promote HSCs activation via interaction 
of toll-like receptor 9 (TLR9) with DNA, which 
is released from apoptotic hepatocytes.48-51 on the 
other hand, Jiang JX et al. showed that activated 
HSCs also can act as phagocytes and phagocytize 
hepatocyte apoptotic bodies which promotes myo-
fibroblasts survival and fibrogenesis.52 Hypoxic 
hepatocytes in cirrhotic stages are primary sources 
for secretion of TGF-β, which may augment liver 
fibrosis.53

Hepatocyte telomerase shortening independent 
of age, can promote scarring and progression of 
fibrosis.54 Studies on telomerase-deficient mice re-
vealed that shortened telomeres due to chronic liver 
injury are associated with impaired liver regenera-
tion and accelerated fibrosis development.55
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Liver sinusoidal endothelial cells (LSECs)
The prominent characteristic of liver sinusoidal 

endothelial cells (LSECs), also known as endothe-
lium, in the normal liver is their fenestrae which 
control exchange of fluids and particles between 
hepatocytes and sinusoidal blood.56 The fenestrated 
endothelial cells also suppress activation of HSCs 
through vascular endothelial growth factor (VEGF) 
stimulated nitric oxide (No) production.57

Upon liver injuries, defenestration and capillar-
ization of LSECs result in disturbances in substrate 
exchange, the main cause of liver dysfunction in 
fibrosis.58 Moreover, capillarized LSECs leads to 
HSCs activation.59,60

Kupffer cells
Kupffer cells (KCs), also called stellate macro-

phages, are usually activated by multiple injuries 
such as viral hepatitis and alcohol consumption.61 
Activation of KCs is a key step in initiation and 
preservation of fibrosis. Activated forms of these 
cells express chemokine receptors, secret inflam-
matory cytokines and act as antigen presenting cells 
in viral hepatitis, which lead to progression of liver 
fibrosis.62-64 KCs activate HSCs, and are observed 
to be engulfing apoptotic particles, which result in 
fibrogenesis.65

Role of cytokines
Liver fibrosis is a consequence of interaction 

of a complex network of cytokines, which modify 
activities of circulating immune cells, HSCs, KCs, 
LSECs, and hepatocytes. In Table 1, we have listed 
the groups of cytokines which enhance or allevi-
ate liver fibrogenesis. However, the effect of cyto-
kines may differ in pathogenesis of different liver 
diseases.

Pathogenesis of fibrosis in specific liver diseases 
Viral hepatitis
Cell death markers such as cytokeratin 18 and al-

anine aminotransferase (ALT) are found to correlate 
with fibrosis stage, so hepatocyte death triggered by 
hepatotropic viruses is considered an essential step 
in progression of fibrosis in viral hepatitis.107,108

Hepatitis B virus (HBV) viral protein, HBx, 
induces paracrine activation and proliferation of 
HSCs and enhances the expression of TGF-β, 
α-SMA and collagen type I .109

Nonstructural hepatitis C virus (HCV) proteins, 
such as NS3 and NS5 may directly activate intracel-
lular pathways within HSCs and promote their ac-
tivation. HCV infection also causes mitochondrial 
dysfunction and oxidative stress in hepatocytes.110 

Chronic infection with this virus leads to cell cycle 
arrest in hepatocyte in G1 stage and inhibits hepa-
tocytes regeneration.1,111

-Alcoholic liver disease (ALD)
Liver fibrosis in chronic exposure to ethanol is 

caused by generation of acetaldehyde. Acetalde-
hyde stimulates production of TGF-β, TNF-α, IL-1, 
reactive oxygen species (RoS), and collagen type 
I .112 Cytochrome P450 (in particular CyP2E1) has 
an essential role in production of RoS.113

Excessive ethanol consumption leads to reduc-
tion of glutathione mediated protection of hepato-
cytes against RoS and induces hepatocyte apop-
tosis through downregulation of Bcl-2 signaling 
pathway.114,115 Ethanol induces fibrogenic activity 
of HSCs by inhibition of autophagy, which results 
in endoplasmic reticulum stresses and inhibits nat-
ural killer (NK) cells’ anti-fibrogenic functions by 
enhancing production of TGF-β by HSCs.116

Several studies have demonstrated that level 
of circulating lipopolysaccharide (LPS) is signifi-
cantly higher in alcohol consumers. LPS promotes 
activation of TLR4 signaling pathway in HSCs and 
LSECs leading to liver fibrosis.117,118

Non-alcoholic fatty liver disease (NAFLD)
Fibrosis progression in non-alcoholic steatohepati-

tis (NASH) can be caused by several triggers, some 
to mention are: 1: oxidative stresses by increased 
RoS production due to excess accumulation of lip-
ids in the hepatocyte 119; 2: induction of inflammatory 
states through release of proinflammatory cytokines 
from adipose tissue120; and 3: activation of TLRs sig-
naling pathway, including TLR2, TLR4, TLR5, and 
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TLR9, in KCs and HSCs. As a result of downstream 
signaling pathways, KCs produce CCL2 that recruits 

Ly6Chi monocytes into the liver. Ly6Chi monocytes 
produce IL-1 and TNF-α and intensify NASH-related 

Table 1: Role of cytokines involved in regulation of liver fibrosis

Mediators Mechanism of action Reference(s)

Growth Factors

Platelet-derived growth factor 
(PDGF)

Stimulates activation and proliferation of HSCs
Upregulates expression of TIMP-1
Inhibits collagenase activity 39,66-69

Transforming growth factor-β 
(TGF-β)

Stimulates activation of HSCs
Upregulates type I collagen and α-SMA synthesis
Promotes MFs survival through activation of FAK
Inhibits DNA synthesis and induces hepatocytes apoptosis
Upregulates expression of TIMPs 
Increases LoXs production

43,70-75

Interleukins

Interleukin-1 (IL-1)

Activates HSCs and promotes HSCs survival through NF-κB
Promotes lipid accumulation in NAFLD
Promotes type I collagen synthesis
Upregulates TIMP-1

41,42,76-78

Tumor necrosis factor-α 
(TNF-α)

Promotes activation of HSCs and reduces apoptosis of activated HSCs
Upregulates TIMP-1
Stimulates hepatocyte apoptosis 77, 79-83

Interleukin-17 (IL-17)
Upregulates type I collagen, TGF-β, and TNF-α through STAT3 pathway
Promotes activation of HSCs 84-86

Interleukin-10 (IL-10)
Inhibits HSCs activity
Inhibits expression of TIMP-1 and TGF-β 87-89

Interleukin-22 (IL-22) Promotes HSCs senescence 90, 91

Interleukin-6 (IL-6)

Attenuates hepatocytes apoptosis and induce regeneration of hepatocytes through 
NF-κB
Induces insulin resistance 92, 93

Interferon 

Interferon-α (IFN-α) Has an anti-apoptotic effect on activated HSCs 94

Interferon-β (IFN-β) Inactivates HSCs and decrease production of type I collagen and α-SMA through 
inhibition of PDGF and TGF-β 94-97

Interferon-γ (IFN-γ)
Inhibits activation of HSCs and reduce type I collagen deposition 
Induces hepatic HSCs apoptosis and cell cycle arrest 95-97

Chemokine

CCL2

Promotes migration of bone marrow-derived monocyte to liver
Activates HSCs
Induces insulin resistance in NAFLD 98-103

CXCL10

Promotes hepatocytes apoptosis
Inhibits NK cells-mediated HSCs inactivation
Stimulates T-cell chemotaxis to the liver 104, 105

CXCL16 Promotes intrahepatic accumulation of NKT cells 106
HSC: hepatic stellate cell; NF-κB: nuclear factor-κB; NAFLD: non-alcoholic fatty liver disease; TIMP: tissue inhibitors of metalloproteinase; STAT: signal transducer and activator of transcrip-
tion; SMA: smooth muscle actin; NKT: natural killer T cell; FAK: focal adhesion kinase; LoX: lysyl oxidase; CXCL: chemokine (C-X-C motif) ligand; CCL: chemokine (C-C motif) ligand
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fibrosis .78, 99,121,122

Studies in animal models have shown that in non-
alcoholic steatohepatitis, hepatic stellate cells are in-
creasingly activated. Moreover, association between 
decreased insulin sensitivity and advanced liver fibro-
sis in NAFLD, suggests that insulin resistance besides 
high fructose and sodium consumption play role in 
HSCs activation and development of fibrosis.123-125 

Recently, it has been suggested that free cholesterol 
accumulation in HSCs as a consequence of Acyl-
coenzyme A: cholesterol acyltransferase 1 (ACAT1) 
deficiency enhances TLR4 signaling and liver fibrosis 
in the mouse model of NASH.126

Diagnosis of liver fibrosis
Defining the disease state is essential for decid-

ing on therapeutic choices and predicting progno-
sis. Although liver biopsy is considered the stan-
dard reference for assessing liver fibrosis, it has 
important limitations including invasiveness127; 
hence, the need is growing for alternative accurate 
and noninvasive methods for diagnosis and staging 
of hepatic fibrosis. Over the last few decades, non-
invasive approaches to diagnosis of liver fibrosis 
have been developed, which overcome some limi-
tations of liver biopsy.

Liver biopsy
Apart from being invasive, liver biopsy has other 

limitations including sampling error as well as in-
tra- and inter-observer variability. Since fibrosis is 
heterogeneous in distribution and samples taken by 
biopsy correspond to roughly 1/50,000 of hepatic 
parenchymal mass, the tissue taken might not rep-
resent the major liver pathology.128 

Based on the underlying fibrogenic factor, liver 
fibrosis could have diverse patterns, and thus his-
tologic examination is important in distinguishing 
between different causes of liver fibrosis. General-
ly, histopathological assessments can show necro-
inflammatory activity (grade) and fibrosis stage of 
chronic hepatitis. There are different scoring sys-
tems for staging liver fibrosis such as METAVIR 
score, the most widely used scoring system for in-

terpretation of fibrosis stage, histology activity in-
dex (HAI) proposed by Knodell in 1981, and modi-
fied HAI of Ishak et al.129-131

Recently pathologists have developed a new ap-
proach, named “morphometry”, which can be used 
to quantify fibrosis by measurement of collagen pro-
portional area (CPA).132,133 Though previous fibrosis 
scores are semi-quantitative and cannot be treated as 
linear values with statistical tests, CPA enables linear 
assessment of the amount of fibrosis.134

Immunohistochemical analysis of cellular mark-
ers such as cytokeratin 7 as a marker of ductular 
proliferation, α-SMA as a marker of HSCs activa-
tion, and CD34 as a marker of LSEC capillarization 
provides functional and dynamic information about 
fibrogenesis.135,136

Laboratory tests
In search of noninvasive markers of fibrosis, a 

constellation of biochemical and hematological se-
rum markers have been suggested as predictors of 
liver fibrosis. Serum markers of fibrosis are clas-
sified as direct and indirect markers. Direct bio-
markers measure components of the hepatic ECM 
as well as the enzymes, which regulate the matrix; 
they include MMPs, subtypes of collagen, and hy-
aluronic acid among others.137,138 Indirect markers 
refer to parameters such as platelet count which 
might reflect hypersplenism due to portal hyperten-
sion, aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) as markers of liver cell in-
flammation, cytokeratin 18 as an indicator of hepa-
tocyte apoptosis, and international normalized ratio 
(INR) as an index of hepatocyte malfunction. 107,139 
Various combinations of these markers are used in 
the diagnosis of hepatic fibrosis.140 Combination of 
serum markers with clinical findings and defining 
new measures may improve accuracy of liver fi-
brosis prediction. Some of these predictors are pre-
sented in table 2.

Imaging modalities
Imaging diagnostic modalities, especially ultra-

sound (US), have played significant role in chronic 
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liver disease management. In addition to US, magnet-
ic resonance imaging (MRI), computed tomography 
(CT), and other modalities derived from these basic 
methods have enabled accurate estimation of liver 
fibrosis and findings associated with portal hyperten-
sion.

Liver stiffness (LS) results from fibrotic tissue 
deposition and liver inflammation, which associates 
with staging of liver fibrosis.148 Liver stiffness can be 
measured by using principles of elastography, which 
are based on propagation of mechanical shear wave in 
tissues. Shear waves propagate more rapidly in stiffer 
tissue corresponding to advanced fibrosis. Here we re-
view US- and MR-based LS measurement.

US-based LS measurement: transient elastog-
raphy (TE)

Transient elastography (TE; Fibroscan), the 
first commercialized elastography technique, was 
introduced in 2003.149 Transient elastography cal-
culates LS and displays the value as the median 
of 10 validated measurements in kilopascals (kPa) 
and closely correlates with the stage of liver fibro-
sis. The technique is noninvasive, replicable, fast, 
and has high inter- and intra-observer repeatabil-
ity; however it has limitations, including probable 
sampling errors, since it assesses approximately 
1/100 liver parenchyma, confounding effect of a 
meal on its accuracy, and measurement failure in 
presence of ascites and severe obesity. Therefore, 

its accuracy decreases in patients with NAFLD 
many of whom are obese.150,151

MR-based LS measurement: magnetic reso-
nance elastography (MRE)

Magnetic resonance elastography has been wide-
ly evaluated and demonstrated as a precise modality 
with high diagnostic performance for detection of 
advanced fibrosis.152 Recently, a meta-analysis by 
Singh et al, that included 12 retrospective studies, 
identified the area under receiver-operating curve 
(AURoC) value of MRE as 0.84 for diagnosis of 
any fibrosis (stage 1), 0.88 for significant fibrosis 
(stage 2), 0.93 for advanced fibrosis (stage 3), 0.92 
for cirrhosis (stage 4), and the overall failure rate 
of MRE as 4.3%.153 Moreover, three-dimensional 
(3D)-MRE, a newly emerging technique, has been 
introduced with higher diagnostic accuracy under 
some circumstances than two-dimensional (2D)-
MRE.154

MRE might be time consuming and expensive, 
but has the ability to analyze the entire liver tissue 
and is not affected by severe obesity and presence 
of ascites.155

CoNCLUSIoN
   New findings have revealed novel cellular and mo-
lecular pathways in the development of liver fibrosis. 
These achievements are the basic step in determina-
tion of biological targets and development of pharma-

Table 2: Selected biomarkers for assessment of liver fibrosis

Biomarkers Components Reference(s)

AST to Platelet Ratio Index (APRI) AST/platelet count 139

BARD score BMI, AST/ALT ratio, diabetes 141

Enhanced Liver Fibrosis Score (ELF) Age, hyaluronic acid, TIMP-1 level, N-terminal propeptide of type I 
collagen 142

FIB-4 AST, ALT, age, platelet count 143

Fibrometer Platelet count, prothrombin index, AST, α2-macroglobulin, hyaluronate, 
urea, age 144

Fibrotest α2-macroglobulin, haptoglobin, apolipoprotein A1, γGT, total bilirubin, 
age, gender 145

Hepascore Bilirubin, α2-macroglobulin, hyaluronate, γGT, age, gender 146

NAFLD Fibrosis Score (NFS) Age, IFG/diabetes, BMI, platelet count, albumin, AST/ALT ratio 147
AST: aspartate aminotransferase; ALT: alanine aminotransferase; BMI: body mass index; γGT: gamma glutamyl transferase; IFG: impaired fasting glucose
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cologic agents to stop the process of fibrogenesis and 
reverse it towards less stages of liver fibrosis. As the 
concept of liver fibrosis reversibility becomes more 
at hand, there is a need for better diagnostic tools 
for evaluating the severity of liver fibrosis in order 
to evaluate the effectiveness of novel interventions. 
Advanced imaging techniques are being developed in 
this regard and there is much hope to see significant 
steps forward in the area of research on liver fibrosis 
in coming years.
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