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Role of MicroRNAs in Pathophysiology of Non-alcoholic 
Fatty Liver Disease and Non-alcoholic Steatohepatitis 
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INTRODUCTION
Non-Alcoholic fatty liver disease (NAFLD) is the most common form of 

liver diseases in the western countries 1-3 and its prevalence is increasing dramati-
cally in our country too.4,5 The disease occurs as the result of fatty deposition 
in the liver parenchymal cells (hepatocytes), which cause the wide range of 
liver abnormalities including steatosis, cirrhosis, and steatohepatitis.6 In fact, 
non-alcoholic steatohepatitis (NASH) is the severe type of NAFLD that can be 
recognized by intense fibrosis, and steatosis, and usually leads to cirrhosis, and 
hepatocellular carcinoma (HCC).7 

The frequency of NAFLD varies from 9% to 36.9% according to ethnicity 
and sex. The prevalence of NAFLD in industrialized countries of North America 
and European ones have been reported 46%, and 29.9% of them suffer from 
NASH. Furthermore, the frequency of NASH is higher among patients with 
diabetes type II and also obese people, which is high as 76-78%.8,9 Most of the 
people (48-100%) suffering from NAFLD show no sign of the disease. So its 
diagnosis based on liver panel tests happens only when the disease progresses 
towards advanced stage.6,10 Based on the fact that fibrosis and wound arising 
from hepatocytes damage are not recognizable by photography and normal 
laboratory tests (aspartate aminotransferase (AST) and alanine aminotransferase 
(ALT), liver biopsy is the gold standard test in diagnosis of NASH.11 
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Review Article

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. It 
includes wide range of diseases from different subtypes of simple steatosis to non-alcoholic steato-
hepatitis (NASH), which may be complicated by liver fibrosis, cirrhosis, or hepatocellular carcinoma. 
Of the epigenetic factors that play a key role in the progression of it, is microRNAs (miRNAs).

MiRNAs are short non-coding RNAs of 22-23 nucleotides in length, which regulate a large 
number of genes that have a critical role in regulation of lipid and cholesterol biosynthesis in 
hepatocytes. MiRNAs can be used as a very powerful biomarker to diagnosis and follow-up any 
disorder, such as NAFLD and NASH with a high specificity and sensitivity. The aim of this study 
was to review the role of different miRNAs in the pathophysiology of NASH and NAFLD.
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Molecular studies have shown that NAFLD is a com-
plex disease, which is controlled by both environmental 
and genetic factors.12 In approximately 15-20% of pa-
tients, NAFLD progresses to NASH but mechanisms of 
this conversion has not been fully understood yet.13 The 
identification of involved molecular mechanisms in the 
occurrence and development of NAFLD plays a key role 
in an early diagnosis and even its treatment. Researchers 
recently have been stated that microRNAs (miRNAs) 
can contribute to the evolutional etiology of this disease. 
To support this finding, many experiments have shown 
vast changes in profile expression of miRNAs in animals 
suffering from NASH.12,14,15

MiRNAs are short non-coding RNAs of 22 nucleotides 
in length that regulate gene expression extensively.16 It 
has been anticipated that human genome encode about 
1000 miRNAs, which are estimated to regulate almost 
one-third of all human genes.17 Thus each mature miRNA 
could regulate a spectrum of gene targets.18 MiRNAs 
have a post transcriptional impact on gene expression by 
binding to the 3’- untranslated region of target mRNAs, 
which either lead to destroying mRNA, or suppressing 
its translation.19,20

Because of well characterized role of miRNAs in 
organ development, such as liver, it would be obvious 
that miRNAs can play a central role in different stages of 
the liver diseases. An increasing number of evidence has 
supported the role of miRNAs in many human diseases.21-24 
MiRNAs have been introduced as non-invasive biomarkers 
of diagnosis due to their secretion into the body fluids 
and the existence of significant concordance  between 
serum and tissue levels of miRNAs,25,26 therefore they 
could improve diagnosis, prognosis, and management of 
the disease.27

“In the present study, we report the surprising and 
exciting discovery that serum and plasma contain a large 
amount of stable miRNAs derived from various tissues/
organs, and that the expression profile of these miRNAs 
shows great promise as a novel non-invasive biomarker for 
diagnosis of cancer and other diseases” chen et al, 2008.28 

After introducing miRNAs as new biomarkers, an 
increasing number of evidence was published for and 
against this theory.29-31 Based on the fact that miRNAs 
have been identified in both microvesicles and exo-
somes, they show more permanency than long and heavy 

RNA. On the other hand some of them that exist out of 
the vesicles’ cover, flow through the blood accompanied 
by argonaute or surrounded proteins in HDL (High Den-
sity Lipoprotein).32 Furthermore, many researchers have 
demonstrated that the expression profiles of miRNAs in 
various cancers show high tissue specificity.30,33 Relying 
on these characteristics; miRNAs have many requisite 
features of good biomarkers to be used in diagnosis and 
follow-up of NASH occurrence and progression. 

Since 2006 when the first documents were published 
about the  role of miRNAs in regulation of lipid metabolism 
in liver tissue, more than 200 papers have been published 
in this field.34 These miRNAs involve in several aspects 
of lipid and cholesterol metabolism and also some cellular 
mechanisms such as cell apoptosis. 

In this paper we try to list more important miRNAs 
and pathways involved in physiopathology of NAFLD 
and NASH.

MiR-122 overexpression is involved in NAFLD:
MiR-122 is a highly expressed liver-specific miRNA, 

which encompasses 70% of liver miRNAs.35,36 This 
miRNA has a critical role in regulation of lipid and cho-
lesterol biosynthesis in hepatocytes. Knockdown of this 
miRNA leads to reduction of cholesterol and triglyceride 
levels in plasma up to 26-28%. The results of microarray 
analysis of liver gene expression in MiR-122 knockout 
mice have shown changes in expression levels of many 
genes involved in regulation of lipid and carbohydrate 
metabolism such as FASN, ACLY, PMVK, SCD1, and 
ACC2, of them phosphomevalonate kinase (PMVK)  
function is more characterized in the pathophysiology 
of fatty liver.37 PMVK encodes a peroxisomal enzyme 
that catalyzes the phosphorylation of mevalonate.38 Fur-
thermore miRNA-122 regulate several genes including 
HMGCS1, HMGCR, and DHCR7, which are involved 
in homeostasis between fatty acids and cholesterol bio-
synthesis pathways.39 This mir plays an important role 
in the pathophysiology of NAFLD by regulating several 
genes critical in cholesterol and lipid hemostasis. 

Researchers demonstrated that the impact of MiR-122 
not only on lipid metabolism, but also deletion of it 
promote microsteatosis and inflammation, which lead to 
poor prognosis of liver cancer. Data demonstrated, de-
livering of MiR-122 in relevant animal model reversed 
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liver inflammation by suppressing MiR-122 targets: che-
mokine Ccl2, that recruit CD11b hiGr1+inflammatory 
cells intrahepatically.40 This important microrna can 
reduce progression to cirrhosis and HCC.41 Researchers 
suggested that serum levels of MiR-122 might be an infor-
mative biomarker to assess early NAFLD superior to clinical 
markers classically used to monitor hepatic disease.42 

MIR-34a induces hepatocyte apoptosis via miR-
34a/SIRT1/P53 proapoptotic pathway:

MiR-34a is the second most important regulatory 
miRNA in the liver physiology. This miRNA is located 
on 1p36 43 and its ectopic expression leads to G1 arrest 
and apoptosis.44-46  

MiR-34a plays an important role in the pathology of 
fatty liver disease via targeting SIRT1 gene.47 SIRT1 
stands for sirtuin (silent mating type information regula-
tion 2 homolog) 1, located on 10q21.3, NAD-dependent 
class III histone deacetylase enzyme, which affects various 
proteins involved in several cellular pathways 48 such as 
deacetylation and thereby deactivation of p53 protein 
and regulates several physiological processes such as 
apoptosis, fat metabolism, and glucose homeostasis. For 
example in the liver, SIRT1 deacetylates the liver X re-
ceptor (it is a nuclear receptor that its role is cholesterol 
sensor and regulates lipid homeostasis) and suppresses 
the protein-tyrosine phosphatase 1B (PTP1B), leading 
to an increase cholesterol transport and decreased insu-
lin resistance, respectively. Researchers theorized that 
deacetylation of LXRs by SIRT1 might affect athero-
sclerosis and aging-associated disorders.49

Several studies indicate that expression of SIRT1 
significantly decreases in NAFLD induced by high-fat 
diet in rat.50  

MiR-34a involve in fatty liver disease progression 
through cell apoptosis induction as a p53 pathway me-
diator. MiR-34a represses the SIRT1 expression thereby 
increasing p53 acetylation, which leads to the induction of 
proapoptotic genes and finally cell death. This is called 
MiR-34a /SIRT1/P53 proapoptotic pathway.38 Studies 
have revealed that the lack of MiR-34 expression results 
in resistance of cells against apoptosis induced by P53.51 

On the other hand, MiR-34a causes apoptosis, cell-
cycle arrest, and cell senescence by suppressing the ex-
pression of antiapoptotic genes such as bcl2, c-MYC, 

cyclin D, MET, and E2F. As a result, MiR-34 may pow-
erfully  responsible for a permanent destruction of cells 
during suffering from NAFLD.43

In conclusion, MiR-34a via targeting SIRT1 gene 
increases cell death and causes liver tissue injury and 
researchers show that silencing of MiR-34a in patients 
with NAFLD could be effective.

MIR-10b regulates lipid storage via targeting of 
PPAR-alpha:

Another important miRNA that is effective in the 
pathogenesis of NAFLD is MIR-10b. It is a non- coding 
RNA. Its gene is located on chromosome 2 and involved 
in genes regulation. The direct target of MIR-10b is 
peroxisome proliferator-activated receptor-alpha (PPAR-
alpha) gene also known as NR1C1 (nuclear receptor sub-
family 1, group C, member 1), a nuclear receptor protein 
that contributes to ketogenesis and a major regulator of 
lipid metabolism in the liver, located on 22q13.31 and 
alter the expression of a large number of target genes 
especially the genes involved in various aspects of lipid 
metabolism. Increased expression of MIR-10b via its ef-
fect on PPAR-alpha, causes increased lipid and triglyceride 
storage in hepatocytes,52 which is eventually leads to tissue 
damage and steatosis of liver.

MIR-33a and MIR-33b coordinate with their host 
genes to regulate cholesterol biosynthesis:

MIR-33a and MIR-33b regulate genes involved in 
lipid metabolism too. MIR-33a is located on intron 16 of 
the SREBP-2 gene and MIR-33b is present in intron 17 
of the SREBP-1 gene.53 These genes encode transcrip-
tional regulatory factor that contributes to cholesterol 
uptake and synthesis.38 These two miRNAs cooperate 
with their host genes to regulate cholesterol hemostasis.54 
These miRNAs regulate genes involved in fatty acid 
metabolism and insulin signaling such as CROT, CPT1A, 
SIRT6, HADHA, and PRKAA1.55

furthermore up-regulation of these miRNAs and their 
host genes leads to modulation of HDL, triglycerides, 
and also insulin signaling, which are the risk factors of 
metabolic syndrome.56 To confirm this role, researchers 
express that inhibition of these miRNAs in non-human 
primates cause the increase of HDL and decrease of 
VLDL levels.57 Also the inhibition of these miRNAs 
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excitingly cause improving of liver tissue regeneration.58 
As a result of inquiries, increased cholesterol intake 

accelerated liver fibrosis in mouse model and the major 
cause of the accelerated liver fibrosis is free cholesterol 
(FC) accumulation in hepatic stellate cells (HSCs), 
which is regulated by sterol regulatory element-binding 
protein 2 (SREBP2) gene. Data showed that the mRNA 
expression levels of SREBP2 were significantly higher 
in HSCs and similarly, the expression levels of LDLR 
and MIR-33a were significantly higher in the high fat 
diet-fed mouse groups than in control diet-fed groups 
leading to increase intake of cholesterol. The results 
showed that SREBF2 is a bi- functional locus encoding 
SREBP2 and MIR-33a. Free cholesterol accumulation 
in HSCs was enhanced mainly by two mechanisms: en-
hancement of SREBP2 and MIR-33a signaling through 
the suppression of PPARc signaling.59

In conclusion, MIR-33 cluster can be used as a biomarker 
of liver tissue fibrosis and its inhibition can be considered as 
of the new therapeutic target for steatosis treatment.53

MiRNAs as biomarkers of NAFLD/NASH:
MiRNAs transfer in body circulation with lipid vesicle 

like bodies, exosomes, or in combination with HDL. This 
protects miRNAs from degradation and gives a high 
stability of these molecules in body fluids. Furthermore 
this protection system causes a high concordance between 
tissue and plasma levels of these molecules. Having this 
characteristics, miRNAs can be used as very powerful bio-
markers to diagnosis and follow-up of any disorder, such 
as fatty liver, with a high specificity and sensitivity.25,28,29 
The circulating miRNA signature of NAFLD has been 
explored in several case control studies up to now.60 One 
of these considerable studies explored the potential role of 
the circulating extracellular vesicles (EVs) as non-invasive 
biomarker in diet-induced NAFLD mice. They extracted 
circulating extracellular vesicles and found that the level 
of EVs correlated with pathological features of hepatic 
cells especially those enrich with mir-122.61 Researchers 
propose that mir-122 is an early disease biomarker of liver 
injury and because of its earlier increased level compared 
with serum ALT, suggested it as an extrahepatic finger-
print of NASH. In NAFLD, they suggested that circulating 
miRNAs (exactly mir-122) could mirror the histological 
and molecular process occurring in the liver.62

CONCLUSION
Number of documents about the role of miRNAs in 

physiopathology of fatty liver disease has increased in 
recent decade. These small non-coding RNA molecules 
can regulate a large number of genes and have a huge 
impact on the initiation and progression of many com-
plex diseases such as fatty liver. MiRNAs can be used 
as either interesting therapeutic targets to treat fatty liver 
disease or biomarker to diagnose it. Including pro-an-
thocyanidin supplementation that decreases postprandial 
lipemia and MIR-33a or MIR-122 levels can be used in 
prevention also treatment of NAFLD.63 In all, further and 
more experimental and clinical studies are still needed 
to evaluate miRNAs in diagnosis, follow-up, and even 
treatment of fatty liver disease.
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